Record	Туре	Symbol	Description
1,2			Comment lines
3	Char	Hed	Heading
4			Comment line
4.1.	Logical	icheck	.true. enables writing output file 'icheck.out',
	e		contains information on the inputs
4.2.	Logical	run inf	.true. enables writing output file 'run inf.out'
	e	_ 0	contains warning messages during execution
4.3.	Logical	t level	.true. enables writing output file 't level.out'
	e		contains information for specified print times
4.4.	Logical	a level	.true. enables writing output file 'a level.out'
	C		contains information for each atmospheric
			time step
4.5.	Logical	co2 inf	.true. enables writing output file
	C	_ 0	'co2 inf.out', contains CO_2 fluxes and
			concentrations for each atmospheric time step
4.6.	Logical	nod inf	.true. enables writing output file
	-		'nod inf.out', contains node-specific
			information for specified print times
4.7.	Logical	balance	.true. enables writing output file
	-		'balance.out', contains water, nitrogen and
			CO ₂ balance
4.8.	Logical	point	.true. enables writing output file 'point.out',
	-	-	contains information for observation nodes at
			all atmospheric time steps
4.9.	Logical	nod pool	.true. enables writing output file
			'nod_pool.out', contains node-specific C and
			N pools for atmospheric time steps
4.10.	Logical	reduction	.true. enables writing output file
			'reduction.out', contains node-specific C and
			N turnover rate modifiers for atmospheric
			time steps
4.11.	Logical	nod_prod	.true. enables writing output file
			'nod_prod.out', contains node-specific CO ₂
			production
4.12.	Logical	matlab	.true. enables writing output file 'matlab.out',
			contains a set of out variables for each
			atmospheric time step
4.13.	Logical	invers	.true. enables writing output file 'invers.out'
4.14.	Logical	term	.true. enables writing output to the screen
			terminal
5.1.	Char	LUnit	Length unit (e.g. mm, cm or m)
5.2.	Char	TUnit	Time unit (e.g. hour or day)
5.3.	Char	MUnit	Mass unit for the concentration variables (e.g.
			mg, g or kg)
5.4.	Integer	MaxIt	Maximum number of iterations allowed
			during any time step (usually 20)

Т	able	12.1	Block	A –	Basic	Informa	ation

5.5.RealTorrAbsolute water content tolerance for nodes in the unsaturated part of the flow region [-] (its recommended value is 0.0001). TolTh represents the maximum desired absolute change in the value of the water content , θ_w , between two successive iterations during a particular time step.5.6.RealTolHAbsolute pressure head tolerance for nodes in the saturated part of the flow region [L] (its recommended value is 0.1 cm). TolH represents the maximum desired absolute change in the value of the pressure head, h, between two successive iterations during a particular time step.5.7.LogicalQuitNC.true. if program execution should be aborted in case convergence in the water flux is intended6.1.LogicalShort0.true. if printing of output at each time level (time-level information) is to be suppressed	5.5	Deal	TolTh	Absolute water content tolerence for nodes in
the unsaturated part of the flow region [-] (its recommended value is 0.0001). TolTh represents the maximum desired absolute change in the value of the water content , θ_w , between two successive iterations during a particular time step.5.6.RealTolHAbsolute pressure head tolerance for nodes in the saturated part of the flow region [L] (its recommended value is 0.1 cm). TolH represents the maximum desired absolute change in the value of the pressure head, h, between two successive iterations during a particular time step.5.7.LogicalQuitNC.true. if program execution should be aborted in case convergence in the water flux is not given; .false. if the original handling of no convergence in the water flux is intended6.1.LogicalShort0.true. if printing of output at each time level (time-level information) is to be suppressed	5.5.	Keal	10111	Absolute water content tolerance for hodes in
recommended value is 0.0001). Toth represents the maximum desired absolute change in the value of the water content, θ_w , between two successive iterations during a particular time step.5.6.RealTolHAbsolute pressure head tolerance for nodes in the saturated part of the flow region [L] (its recommended value is 0.1 cm). TolH represents the maximum desired absolute change in the value of the pressure head, h, between two successive iterations during a particular time step.5.7.LogicalQuitNC.true. if program execution should be aborted in case convergence in the water flux is not given; .false. if the original handling of no convergence in the water flux is intended6.1.LogicalShort0.true. if printing of output at each time level (time-level information) is to be suppressed				the unsaturated part of the flow region [-] (its
intermaximum desired absolute change in the value of the water content , θ_w , between two successive iterations during a particular time step.5.6.RealTolHAbsolute pressure head tolerance for nodes in the saturated part of the flow region [L] (its recommended value is 0.1 cm). TolH represents the maximum desired absolute change in the value of the pressure head, h, between two successive iterations during a particular time step.5.7.LogicalQuitNC.true. if program execution should be aborted in case convergence in the water flux is not given; .false. if the original handling of no convergence in the water flux is intended6.1.LogicalShort0.true. if printing of output at each time level (time-level information) is to be suppressed				recommended value is 0.0001). <i>TolTh</i> represents
5.6.RealTolHAbsolute pressure head tolerance for nodes in the saturated part of the flow region [L] (its recommended value is 0.1 cm). TolH represents the maximum desired absolute change in the value of the pressure head, h, between two successive iterations during a particular time step.5.7.LogicalQuitNC.true. if program execution should be aborted in case convergence in the water flux is not given; .false. if the original handling of no convergence in the water flux is intended6.1.LogicalShort0.true. if printing of output at each time level (time-level information) is to be suppressed				of the water content. 0 hotware two successive
5.6. Real TolH Absolute pressure head tolerance for nodes in the saturated part of the flow region [L] (its recommended value is 0.1 cm). TolH represents the maximum desired absolute change in the value of the pressure head, h, between two successive iterations during a particular time step. 5.7. Logical QuitNC .true. if program execution should be aborted in case convergence in the water flux is not given; .false. if the original handling of no convergence in the water flux is intended 6.1. Logical Short0 .true. if printing of output at each time level (time-level information) is to be suppressed				of the water content, θ_{w} , between two successive
5.6.RealTotHAbsolute pressure head tolerance for nodes in the saturated part of the flow region [L] (its recommended value is 0.1 cm). TolH represents the maximum desired absolute change in the value of the pressure head, h, between two successive iterations during a particular time step.5.7.Logical QuitNC.true. if program execution should be aborted in case convergence in the water flux is not given; .false. if the original handling of no convergence in the water flux is intended6.1.Logical Short0.true. if printing of output at each time level (time-level information) is to be suppressed	5 (D1	T - 111	Al as late analysis has the language formed to be
the saturated part of the flow region [L] (its recommended value is 0.1 cm). TolH represents the maximum desired absolute change in the value of the pressure head, h, between two successive iterations during a particular time step.5.7.Logical QuitNC.true. if program execution should be aborted in case convergence in the water flux is not given; .false. if the original handling of no convergence in the water flux is intended6.1.Logical Short0.true. if printing of output at each time level (time-level information) is to be suppressed	5.6.	Real	1018	Absolute pressure head tolerance for hodes in
 recommended value is 0.1 cm). TolH represents the maximum desired absolute change in the value of the pressure head, h, between two successive iterations during a particular time step. 5.7. Logical QuitNC true. if program execution should be aborted in case convergence in the water flux is not given; .false. if the original handling of no convergence in the water flux is intended 6.1. Logical Short0 true. if printing of output at each time level (time-level information) is to be suppressed 				the saturated part of the flow region [L] (its
 represents the maximum desired absolute change in the value of the pressure head, h, between two successive iterations during a particular time step. 5.7. Logical QuitNC .true. if program execution should be aborted in case convergence in the water flux is not given; .false. if the original handling of no convergence in the water flux is intended 6.1. Logical Short0 .true. if printing of output at each time level (time-level information) is to be suppressed 				recommended value is 0.1 cm). TolH
change in the value of the pressure head, h, between two successive iterations during a particular time step.5.7.Logical QuitNC.true. if program execution should be aborted in case convergence in the water flux is not given; .false. if the original handling of no convergence in the water flux is intended6.1.Logical Short0.true. if printing of output at each time level (time-level information) is to be suppressed				represents the maximum desired absolute
5.7. Logical QuitNC .true. if program execution should be aborted in case convergence in the water flux is not given; .false. if the original handling of no convergence in the water flux is intended 6.1. Logical Short0 .true. if printing of output at each time level (time-level information) is to be suppressed				change in the value of the pressure head, <i>h</i> ,
5.7. Logical QuitNC .true. if program execution should be aborted in case convergence in the water flux is not given; .false. if the original handling of no convergence in the water flux is intended 6.1. Logical Short0 .true. if printing of output at each time level (time-level information) is to be suppressed				between two successive iterations during a
 5.7. Logical QuitNC .true. if program execution should be aborted in case convergence in the water flux is not given; .false. if the original handling of no convergence in the water flux is intended 6.1. Logical Short0 .true. if printing of output at each time level (time-level information) is to be suppressed 				particular time step.
6.1. Logical Short0 in case convergence in the water flux is not given; .false. if the original handling of no convergence in the water flux is intended 6.1. Logical Short0 .true. if printing of output at each time level (time-level information) is to be suppressed	5.7.	Logical	QuitNC	.true. if program execution should be aborted
6.1. Logical Short0 strue. if printing of output at each time level (time-level information) is to be suppressed				in case convergence in the water flux is not
convergence in the water flux is intended6.1.Logical Short0.true. if printing of output at each time level (time-level information) is to be suppressed				given; .false . if the original handling of no
6.1.Logical Short0.true. if printing of output at each time level (time-level information) is to be suppressed				convergence in the water flux is intended
(time-level information) is to be suppressed	6.1.	Logical	Short0	.true. if printing of output at each time level
		C		(time-level information) is to be suppressed
and the information printed only in specified				and the information printed only in specified
print times; .false. if this information is to be				print times; .false. if this information is to be
printed on each time level				printed on each time level
6.2. Logical <i>lWat</i> Set this logical variable equal to true , if	6.2.	Logical	lWat	Set this logical variable equal to .true , if
transient water flow is to be considered. Set	0.2.	Logical		transient water flow is to be considered. Set
equal to false if initial condition given in				equal to false if initial condition given in
Block B (e.g. $hOld$) is to be kent constant				Block B (e.g. $hOld$) is to be kept constant
throughout the simulation				throughout the simulation
6.3 Logical 1002 Set this logical variable equal to true if	63	Logical	1002	Set this logical variable equal to true if
carbon dioxid transport is to be considered	0.5.	Logical	1002	carbon dioxid transport is to be considered
6.4 Logical <i>IRoot</i> Set this logical variable equal to true if the	6.4	Logical	1Root	Set this logical variable equal to true if the
root growth is to be considered	0.7.	Logical	inooi	root growth is to be considered
6.5 Logical <i>ITemp</i> Set this logical variable equal to true if heat	6.5	Logical	ITomp	Set this logical variable equal to true if heat
b.s. Logical <i>liemp</i> Set this logical variable equal to .true. If heat	0.5.	Logical	iTemp	transmort is to be considered
<u>transport is to be considered.</u>	6.6	Logiaal	InitWC	true if the node encific initialization of the
o.o. Logical initial 	0.0.	Logical	muwc	.true. If the node-specific initialization of the
water flux model with water content is				water flux model with water content is
intended				intended
.false. If the original node-specific				.false. If the original node-specific
initialization of the water flux model with				initialization of the water flux model with
pressure head is intended				pressure head is intended
6.7. Logical <i>Plants</i> Set this logical variable equal to .true. if crop	6.7.	Logical	Plants	Set this logical variable equal to .true. if crop
growth is to be considered; 'plants.in'				growth is to be considered; 'plants.in'
required				required
6.8. Logical <i>Nitrogen</i> Set this logical variable equal to .true. if	6.8.	Logical	Nitrogen	Set this logical variable equal to .true. if
nitrogen transport and uptake is to be				nitrogen transport and uptake is to be
considered; input Blocks I and J and Tab. 13				considered; input Blocks I and J and Tab. 13
to 17 in 'plants.in' required				to 17 in 'plants.in' required
6.9. Logical <i>Phosphorus</i> Set this logical variable equal to .true. if	6.9.	Logical	Phosphorus	Set this logical variable equal to .true. if
Phosphorus transport and uptake is to be			-	Phosphorus transport and uptake is to be
considered; input Blocks J and K and input in				considered; input Blocks J and K and input in
'plants.in' required				'nlants in' required

6.10.	Logical Transport	Set this logical variable equal to .true. if solute transport is to be considered: Block I
		required. Note: set equal to .true. , when
		leaching output in 'a level.out' for nitrogen
		or phosphorous transport is wanted
7.1.	Logical TopInf	.true. if time dependent boundary condition is
		to be imposed at the top of the profile; data
		are supplied via input file 'atmosph.in'.
		.false. in the case of time independent surface
		boundary conditions.
7.2.	Logical AtmBC	.true. if variable boundary conditions are
	-	supplied via the input file 'atmosph.in', .false.
7.2.		if the file 'atmosph.in' is not provided (i.e., in
		case of time independent boundary
		conditions).
7.3.	Logical SinkF	Set this variable equal to .true. if the water
		extraction from the root zone occurs.
7.4.	Logical WLayer	Set this variable equal to .true. if water can
		accumulate at the surface with zero surface
		runoff.
7.5.	Logical <i>lAmpl</i>	Optional:
		.true. if time dependent amplitudes of the
		daily temperature for the daily amplitude
		concept should be read as column 12 from
		atmosph.in (Note: Only works with kProd=3)
		.false. column 12 is not read from atmosph.in
		Default setting is .false.
8.1.	Logical BotInF	.true. if time dependent boundary condition is
		to be imposed at the bottom of the profile;
		control data are supplied via input file
		AIMOSPH.IN
		. Taise. In case of time independent bottom
0.2		boundary conditions.
8.2.	Logical qGWLF	Set this variable equal to .true. If the
		discharge-groundwater level relationship q_w
		(GwL) is applied as boltom boundary
8.2	Logical FreeD	true if free drainage is to be considered as
0.3.	Logical TreeD	hottom houndary condition
84	Logical SeenF	true if seenage face is to be considered as
0.4.	Logical Scept	bottom boundary condition
91	Integer KodTon	Code specifying type of boundary conditions
<i>J</i> .1.	integer Routop	(BC) for water flow at the surface
		Code number is positive for Dirichlet BC and
		negative for Neumann BC. In the case of
		'Atmospheric BC' set $KotTop=-1$.
9.2.	Integer KodBot	Code specifying type of boundary condition
- ·=•		for water flow at the bottom of the profile.
		Code number is positive for a Dirichlet BC
		and negative for a Neumann BC. In case of a
		seepage face or free drainage BC set

			<i>KodBot=-1</i> .In case of <i>KodBot=6</i> bottom boundary will be defined as open column MSO boundary.
9.3.	Real	НТор	Optional: Prescribed pressure head at the top at t=0, only relevant if the water flux is initialised with pressure heads instead of water content (initWC=.true.) Note: If initWC is .false. the input for HTop must be removed.
9.4.	Real	HBottom	Optional: Prescribed pressure head at the bottom at t=0, only relevant if the water flux is initialised with pressure heads instead of water content (initWC=.true.) Note: If initWC is .false. the input for <i>HBottom</i> must be removed.
10.1.	Real	rTop	Prescribed top flux [LT ⁻¹] (in case of a Dirichlet BC set this variable equal to zero).
10.2.	Real	rRoot	Prescribed potential transpiration rate [LT ⁻¹] (if no transpiration occurs or if transpiration is variable in time set this variable in time set this variable equal to zero).
10.3.	Real	rBot	Prescribed bottom flux [LT ⁻¹] (in case of a Dirichlet BC set this variable equal to zero).
10.4.	Real	hCritS	Maximum allowed pressure head at the soil surface [L].
10.5.	Real	hCritA	Absolute value of minimum allowed pressure head at the soil surface.
11.1.	Real	xSurf	z-coordinate of the uppermost node (=soil surface)
11.2.	Real	GWL0L	Reference position of the groundwater table (e.g., the z-coordinate of the soil surface).
11.3.	Real	Agh	Value of the parameter A, $[LT^{-1}]$ in the $q_w(GWL)$ -relationship, equation (10.1); set to zero if $qGWL$ =.false.
11.4.	Real	Bgh	Value of the parameter B_{qh} [L ⁻¹] in q _w (GWL)- relationship, equation (10.1); set zero if $qGWL$ =.false.

Record	Туре	Symbol	Description
1			Comment lines.
2.1.	Integer	NumNP	Number of nodal points.
2.2.	Integer	NMat	Number of soil materials. Materials are
	-		identified by the material number, MatNum,
			specified in Block B.
2.3.	Integer	NLay	Number of subregions for which separate
			water balances are being computed.
			Subregions are identified by the subregions
			number, LayNum, specified in Block B.
2.4.	Integer	NObs	Number of observation nodes for which
			values of pressure head, the water content,
			temperature (for <i>lTemp=</i> .true.), and carbon
			dioxide (for <i>lCO2</i> =.true.) are printed at each
			time level.
2.5.	Integer	NSolutes	Number of solutes. If logical variable
			<i>Nitrogen</i> is .true. set <i>NSolutes</i> =3.
3	Integer	ObsNod	Observation points (listed starting with
			highest value).
4	Real	dx	dx-increments [L] (NumNP-1 items). Specify
			the number of increments and the spatial
			distance between nodes, separated by '*'
5.1.	Integer	Node	Nodal number
5.2.	Real	hOld	Initial value of the pressure head at node n [L]
			If <i>lWat</i> =.false. (Block A), then <i>hOld(n)</i>
			represents the pressure head which will be
			kept constant during simulation. Note: If
			<i>initWC</i> (Block A) is .true. the initial water
			content [-] has to be specified for the nodes
5.3.	Integer	MatNum	Index for material whose hydraulic and
			transport properties are assigned to node <i>n</i> .
5.4.	Integer	LayNum	Subregion number assigned to node <i>n</i> .
5.5.	Real	Beta	Value of the water uptake distribution, $h(z)$
			$[L^{-1}]$, in the soil root zone at node <i>n</i> . Set
			<i>Beta(n)</i> equal to zero if note <i>n</i> lies outside in
			the root zone.
5.6.	Real	Co2Conc	Initial value of the carbon dioxide
			concentration at node $n [L^3 L^{-3}]$.
5.7.	Real	Тетр	Initial soil temperature at node n [°C].
5.8.	Real	Conc(1)	Initial concentration of the first solute at node
			$n [M/L^3].$
5.9.	Real	Conc(2)	Initial concentration of the second solute at
			node n $[M/L^3]$.
5.10	Real	Conc(NSolutos)	Initial concentration of the NS obstacts solute
5.10	Real	Conc(nsolules)	at node n $[M/L^3]$

Table 12.2 Block **B** – **Nodal** Information

Note: If logical variable *Nitrogen* is **.true**. Conc(1) is the initial concentration of Urea, Conc(2) is the initial concentration of liquid phase Ammonium and Conc(3) is the initial concentration of Nitrate.

Record	Туре	Symbol	Description
1			Comment line
2.1.	Real	hTabMin	Absolute value of the lower limit [L] of the pressure head interval for which a table of hydraulic properties will be generated internally for each material (e.g. 1000 m). One may assign to h_b the highest (absolute) expected pressure head to be expected during a simulation. If the absolute value of the pressure head during program execution lies outside of the interval $[h_a,h_b]$, then appropriate values for the hydraulic properties are computed directly from the hydraulic functions (i.e., without interpolation in the table).
2.2.	Real	hTabMax	Absolute value of the upper limit [L] of the pressure head interval below which a table of hydraulic properties will be generated internally for each material (h_a must be greater than 0.0; e.g. 0.001 cm, see section 7.4.7 Unsatchem.pdf).
2.3.	Integer	NPar	Number of parameters specified for each material in records 4.1. to 4.13 (θ_s , θ_r , α , n, Ks, tau = Bpar) (i.e., 9 in case of the modified van Genuchten's model (hysteresis) or 13 in case of Durner's bimodal model).
2.4	Integer	iModel	1 = Mualem van Genuchten with 10 parameters (θ_s , θ_r , α , n, Ks, tau or lambda= Bpar) (see 2.3) 2= Durner Model (dual porosity) additional 3 parameters (w2, α 2, n2)
2.5	Integer	NTab	Number of entries for the internal interpolation table for $\theta(h)$ and K(h). If not defined NTab will be set to 100
4.1.	Real	Par(1,M)	Parameter θ_r for material M [-]
4.2.	Real	Par(2,M)	Parameter θ_s for material M [-]
4.3.	Real	<i>Par(3,M)</i>	Parameter θ_a for material M [-]
4.4.	Real	<i>Par(4,M)</i>	Parameter θ_m for material M [-]
4.5.	Real	<i>Par(5,M)</i>	Parameter α for material M [L ⁻¹]
4.6.	Real	<i>Par(6,M)</i>	Parameter n for material M [-]
4.7.	Real	<i>Par(7,M)</i>	Parameter K _s for material M [LT ⁻¹]
4.8.	Real	<i>Par(8,M)</i>	Parameter K_k for material M [LT ⁻¹]
4.9.	Real	Par(9,M)	Parameter θ_k for material M [-]
4.10.	Real	<i>Par(10,M)</i>	Parameter λ (tortuosity) for material M [-]
4.11	Real	<i>Par(11,M)</i>	Parameter w2 (weighting factor Durner model) for material M [-]

4.12	Real	<i>Par(12,M)</i>	Parameter α2 (alpha for macropore domain
			Durner model) for material M [-]
4.13	Real	Par(13,M)	Parameter n2 (n for macropore domain
			Durner model) for material M [-]

Record	Туре	Symbol	Description
1			Comment line
2.1.		dtInit	Initial time increment Δt [T]. Initial time step should be estimated based on the problem
			being solved. For problems with high pressure gradients (e.g. infiltration into an initially dry soil), Δt should be relatively small.
2.2.	Real	dtMin	Minimum permitted time increment, Δt_{min} [T].
2.3.	Real	dtMax	Maximum permitted time increment, Δt_{max} [T].
2.4.	Real	<i>DtMul</i>	If the number of required iterations at a
			particular time step is less than or equal to 3,
			then Δt for the next time step is multiplied by
			a dimensionless number $dMul \ge 0$ (it is
			recommended that this value not exceed 1.3).
2.5.	Real	DtMul2	If the number of required iterations at a
			particular time step is greater than or equal to
			7, then At for the next time step is multiplied
2 (τ		by $dMul2 \le 1.0$ 8e.g. 0,33).
2.6.	Integer	NumOfPrints	Number of specified print-times at which
			detailed information about the pressure head,
			concentrations, water, CO, and solute
			balances will be printed
3.1	Real	TPrint (1)	First specified print-time [T]
3.1.	Real	$\frac{TP_{rint}(1)}{TP_{rint}(2)}$	Second specified print time [T]
3.2.	Pool	TPrint (MPI)	Last specified print time [T] All print time
5.5.	INCAI	11 / III (IVII L)	have to be within one line
			nave to be within one line.

Table 12.4 Block **D** – **Time** Information

Record	Туре	Symbol	Description
1			Comment line
2.1.	Real	Ampl	Temperature amplitude at the soil surface [K].
2.3.	Real	tPeriod	Time interval for completion of one
			temperature cycle (usually 1 day) [T].
3.1.	Integer	kTopT	Code which specifies the type of upper
	e	1	boundary condition
			=1: Dirichlet boundary condition,
			=-1: Cauchy boundary condition.
3.2.	Real	tTop	Temperature of the upper boundary, or
		1	temperature of the incoming fluid [°C].
3.3.	Integer	kBotT	Code which specifies the type of lower
	-		boundary condition
			=1: Dirichlet boundary condition,
			=0: continuous temperature profile, zero
			gradient,
			=-1: Cauchy boundary condition.
3.4.	Real	tBot	Temperature of lower boundary, or
			temperature of the incoming fluid [°C].
4.1.	Real	Beta	Longitudinal thermal dispersivity of material
			$M, \lambda_{\rm L}$ [L].
4.2.	Real	θn	Volumetric solid phase fraction of material M,
			θn [-].
4.3.	Real	θo	Volumetric organic matter fraction of material
			M, θο [-].
4.4.	Real	B1	Coefficient b_1 in the thermal conductivity
			function $[MLT^{-3}K^{-1}]$ (e.g. Wm ⁻¹ K ⁻¹) (see
			equation (4.6)).
4.5.	Real	<i>B2</i>	Coefficient b_2 in the thermal conductivity
			function $[MLT^{-3}K^{-1}]$ (e.g. Wm ⁻¹ K ⁻¹) (see
			equation (4.6)).
4.6.	Real	<i>B3</i>	Coefficient b ₃ in the thermal conductivity
			function $[MLT^{-3}K^{-1}]$ (e.g. Wm ⁻¹ K ⁻¹) (see
			equation (4.6)).
4.7.	Real	Cn	Volumetric heat capacity of solid phase of
			material M, Cn [ML ⁻¹ T ⁻² K ⁻¹] (e.g. Jm ⁻³ K ⁻¹).
4.8.	Real	Со	Volumetric heat capacity of organic matter of
			material M, Co $[ML^{-1} T^{-2} K^{-1}]$ (e.g. $Jm^{-3} K^{-1}$).
4.9.	Real	Cw	Volumetric heat capacity of liquid phase of
			material M, Cw [ML ⁻¹ T ⁻² K ⁻¹] (e.g. Jm ⁻³ K ⁻¹).

Table 12.5 Block G-Heat Transport Information

Record	Туре	Symbol	Description
1	v 4	*	Comment line
2.1	Logical	1Stagn	Set this variable equal to .true. if the gas phase is to be considered stagnant, e.i., there is no gas convention. Otherwise the simplified gas convection expression is considered (see section 5.1.).
2.2	Integer	iGasDiff	 Optional: Code specifying the estimation of the effective diffusion coefficient =1: Millington & Quirk (1963) (original soilco2) =2: Moldrup et al. (2000) =3: Moldrup, Olesen et al. (2000), (Parameters <i>Eps100</i> and <i>Campb</i> required) =4: double linear function according to Weihermüller er al. (2008) =5: Kristensen et al. (2010), parameters <i>Eps</i>, <i>H</i> and <i>Xm</i> required (Note: If iGasDiff is not specified the default of 1 (Millington & Quirk 1963) is applied)
2.3	Real	CO2dtmin	Optional : In case a value >0 is given, this value is used as the minimum time step in the routine that controls the time step according to the CO2 flux. For negative values the default time stepping according to the water flux is enabled. (Note : Could only be used if iGasDiff is given as previous record)
3.1.	Integer	kTopCO	Code specifying type of boundary condition (BC) for the CO ₂ transport at the soil surface. Code number is positive for Dirichlet BC and negative for stagnant boundary layer at the soil surface.
3.2.	Real	СО2Тор	Value of the time independent BC at the surface $[L^{3}L^{-3}]$. For <i>kTopCO</i> <0 <i>CO2Top</i> represents the thickniss of the stagnant boundary layer [L].
3.3.	Integer	kBotCO	Code specifying type of boundary condition at the bottom of the profile. Code number is positive for Dirichlet and negative for Cauchy BC. In the case of `Free drainage' set <i>kBotCO</i> =0.
3.4.	Real	CO2Bot	Value of the time independent BC at the bottom of the soil profile $[L^3L^{-3}]$. In case of `Free drainage' set <i>CO2Bot</i> =0.
4.1.	Real	DispA	Molecular diffusion coefficient of CO_2 in air at 20°C, $D_a[L^2T^{-1}]$.
4.2.	Real	DispW	Molecular diffusion coefficient of CO_2 , in water at 20°C, $D_w [L^2T^{-1}]$.

Table 12.6 Block H – Carbon Dioxide Transport and Production Information

4.3.	Real	Disper	Longitudinal dispersivity of CO ₂ of material
			The same record as above must be provided
			for each material M (specified NMat).
4.4.	Real	Eps100/Eps	Optional: Parameter <i>Eps100</i> (iGasDiff=3) or fracture porosity <i>Eps</i> [-] for iGasdiff=5
4.5.	Real	Campb/H	Optional: Parameter <i>Campb</i> (iGasDiff=3) or fracture tortuosity factor <i>H</i> [-] for iGasdiff=5
4.6	Real	Xm	Optional: Matrix tortuosity factor <i>Xm</i> [-] for iGasdiff=5
5.1.	Real	gamSO	Optimal CO ₂ production by soil microorganisms for the whole soil profile at 20°C under optimal water, solute, and CO ₂ concentration condition, γ_{s0} [L ³ L ⁻² T ⁻¹].
5.2.	Real	gamRO	Optimal CO ₂ production by plant roots for the whole soil profile at 20°C under optimal water, solute, and CO ₂ concentration conditions γ_{r0} [L ³ L ⁻² T ⁻¹].
5.3.	Real	PDDMax	The cumulative value of temperature when the CO_2 production reaches the maximum value. Set equal to zero if degree day concept is not used to calculate the time reduction coefficient for plant CO_2 production. In that case the time reduction coefficient is equal to one during the whole season
5.4.	Integer	kProd	Code specifying the type of spatial distribution function for CO ₂ production by soil microorganisms. =0: Exponential function. =1: van Genuchten's distribution function. =3: Carbon pools (RothC)
6	Real	xR	Maximum depth of the CO_2 soil production (only if <i>kProd</i> =1) [L].
7.1.	Real	B1	Activation energy of the CO ₂ production by soil microorganisms E [ML ² T ⁻² M ⁻¹], divided by universal gas constant R [ML ² T ⁻² K ⁻¹ M ⁻¹]; B ₁ =E ₁ / R [K].
7.2.	Real	<i>B2</i>	Activation energy of the CO ₂ production by plant roots E_2 [ML ² T ⁻² M ⁻¹], divided by universal gas constant R [ML ² T ⁻² K ⁻¹ M ⁻¹]; B ₂ =E ₂ / R [K].
7.3.	Real	cM1	Michaelis' constant of CO ₂ production by plant roots [L ³ L ⁻³]. It is equal to the CO ₂ concentration at which the CO ₂ production is reduced by half from the optimal value γ_{r0} .
7.4.	Real	cM2	Michaelis' constant of CO_2 production by plant roots [L ³ L ⁻³]. It is equal to the CO_2 concentration at which the CO_2 production is reduced by half from the optimal value γ_{s0} .

7.5.	Real	HB1	Value of pressure head at which the CO ₂
			production by soil micro-organisms is at the
			optimal level [L].
7.6.	Real	HB2	Value of the pressure head below which the
			CO ₂ production by soil micro-organisms
			ceases [L].
7.7.	Real	<i>f</i> S6	additional scaling factor for the rate constants
7.8.	Real	Patm	Optional : atmospheric pressure; Note : in case
			7.8. to 7.10. are not specified the default
			values of SoilCO2/RothC are used.
7.9.	Real	gasconst	Optional: Gas constant
7.10.	Real	MolCO2	Optional : Molecular weight of CO ₂
8.1.	Real	kDPM	Decomposition rate constant of DPM pool
			[1/T].
8.2.	Real	kRPM	Decomposition rate constant of RPM pool
			[1/T].
8.3.	Real	kBIO	Decomposition rate constant of BIO pool
			[1/T].
8.4.	Real	kHUM	Decomposition rate constant of HUM pool
			[1/T].
8.5.	Real	Pdenth	Depth to which fresh plant is incorporated
			[L].
8.6.	Real	CO2alf	Choose initial pool distribution over depth
0.01	Item	cczuy	=-1.0 one input value for each node (order is
			node n to 1)
			=0.0 one input value for each material (order
			is 1 to n materials)
			>0.0 one input value for each pool
			exponential distribution of initial
			concentration on the nodes. Could only be
			used when a single material was specified for
			the entire soil profile CO2alf is the scaling
			factor in an exponential approach to distribute
			the pool over depth (defines the slope of the
			avponential function)
0.1	Interer	in a lW	Chasse maintain function function
9.1.	Integer	ireaw	-0 SOIL CO2 (Simulate and Supress 1002)
			-0 SOILCO2 (Simular and Suarez 1995) -1 SOILCO2 (Simular at al. 1006)
			=1 SOILCO2 (Simulek et al. 1990)
			-2 DAIS 1, original version
			-3 CAND I -4 DATCIS
			-4 PAICIS -5 CENTUDY 1 Contains (0.6) is no swined
			=5 CENTURY, Incentury (9.0.) is required
			=/ no reduction
			=8 DAISY, without reduction function
			according to soil aeration
			=10 reduction factors for n water content
			Intervals
	τ	· 177	=11 stepwise linear function.
9.2.	Integer	iredT	Choose temperature reduction function
			=1 SOILCO2 (Simunek and Suarez 1993)

			=2 DAISY
			=3 CANDY
			=4 PATCIS
			=5 CENTURY
			=6 ROTHC
			=7 no reduction
			=8 SOILCO2 with pool dependent activation
			energy
			=9 SOILCO2 for four temperature intervals
			=10 reduction factors for n temperature
			intervals
			=11 Kirschbaum et al. 2000
			=12 Parton et al. 1987
			=13 O'Connel et al. 1990.
9.3.	Integer	iredCO2 (1;2)	Choose CO ₂ reduction function
			=0 SOILCO2
			=1 SOILCO2 modified by M. Herbst
			21/02/06
			=3 no reduction ($f(CO_2)=1.0$).
9.4.	Integer	iReftemp	Choose reference temperature of input or
			model
			=0 input reference temperature (Reftemp)
			=1 reference temperature of SOILCO2
			=2 reference temperature of DAISY
			=3 reference temperature of CANDY
			=4 reference temperature of PATCIS
			=5 reference temperature of CENTURY
			=6 reference temperature of ROTHC.
9.5.	Real	Reftemp	Reference temperature [°C].
9.6.	Real	hCentury	Optional : Pressure head for the Century
			approach (Must only be specified for
			iredw=5).
9.7.	Real	Bldpm	Optional: Activation energy for the DPM
			pool, required only in case iredT=8. (Note: To
			specify the four pool-specific activation
			energies (record 9.7. to 9.10) hCentury has to
			be specified as the previous record, even if
			iredw is not set to 5.)
9.8.	Real	B1rpm	Optional : Activation energy for the RPM
			pool, required only in case iredT=8.
9.9.	Real	B1bio	Optional : Activation energy for the BIO pool,
			required only in case iredT=8.
9.10.	Real	B1hum	Optional: Activation energy for the HUM
			pool, required only in case iredT=8.
			Optional : Input block of 6 lines in case
			iredW=10 or/and iredT=10. This allows
			specifying intervals for temperature and water
			content and respective reduction factors. A
			number of n intervals could be specified by n-
			1 thresholds and n reduction factors (Interval
			1 (i ₁) is defined by \leq threshold 1 (t ₁) for

			reduction factor 1 (f ₁), i ₂ is defined as $>$ t ₁ and $<$ t ₂ for f ₂ and so on. The last interval i _n is
			defined as $> t_{n-1}$ for factor f_n):
			1 comment line
			2 number of intervals Numlnt
			3 comment line
			4 Numlnt-1 threshold temperatures defining
			the Numlnt intervals
			5 comment line
			6 reduction factor for each of the Numlnt intervals
			(Note: In case water content is specified too,
			lines 3 to 6 must be given twice. The block for
			water content should be given first, followed
			by temperature.)
10	Real		Clay content [M/M]. Required for 1 to NMat.
11.1.	Real	iDPM	Initial concentration of the decomposable
			plant material (DPM) pool [M/L ³]. Note: In
			case the initial pools are defined node-
			specifically the input is read from n to 1. If the
			initial pools are defined for each material
			they are read from 1 to n. That also holds for
			iRPM, iBIO, iHUM and iIOM
11.2.	Real	iRPM	Initial concentration of the resistant plant
			material (RPM) pool [M/L ³]. Note: specified
			for each node, material or each pool, see
			record 8.6 (<i>CO2alf)</i> , defining the initial pool
11.0	D 1	:010	distribution over depth
11.3.	Real	iBIO	Initial concentration of the biomass (BIO)
			pool [M/L ³]. Note: specified for each node,
			material or each pool, see record 8.6
			(<i>CO2alf)</i> , defining the initial pool distribution
11 /	Deal	:11111	Lettel concentration of the human (III M)
11.4.	Keal	IHUM	Initial concentration of the numus (HUM)
			material or each pool see record 8.6
			(CO2alf) defining the initial need distribution
			(CO2 <i>uij)</i> , defining the lintial pool distribution
11.5	Real	ΙΟΜ	Initial concentration of the inert organic
11.2.	ixeai	10111	matter (IOM) pool [M/I ³] Note: specified for
			each node material or each nool see record
			8.6 (CO2alf) defining the initial pool
			distribution over denth

Record	Туре	Symbol	Description
1			Comment line
2.1.	Logical	INpools	Set this variable equal to .true. to enable mineralistion/immobilisation of organic
	T · 1		nitrogen
2.2.	Logical	NrootUpt	diffusive and convective root uptake of nitrogen
2.3.	Logical	Lnfixat	Set this variable equal to .true. to enable nitrogen fixation
2.4.	Real	Rkfixopt	Nitrogen fixation rate constant [M L ⁻² T ⁻¹]
2.5.	Real	Denthresh	Threshold that defines effective saturation denitrification starts. [-] Default value (according to Aulakh et al., 1992) is 0.8. A negative number indicates the use of the denitrification to effective saturation response suggested by DelGrossso et al. 2000.
3			Comment line
4.1.	Real	Ro	C/N ratio of the biomass [-]
5.1.	Real	Fh	Humification coefficient; WAVE default = 0.4, negative value indicates the use of the RothC value = 0.54 [-]
6			Comment line
7.1.	Real	Rknitri	Nitrification rate constant [T ⁻¹], liquid phase NH ₄ to NO ₃
8.1.	Real	Rkdenit	Denitrification rate constant [T ⁻¹]
9.1.	Real	Rhyd	Urea hydrolysis constant [T ⁻¹], CH ₄ N ₂ O to liquid phase NH ₄
10.1.	Real	Rkvol	Ammonia volatilization rate constant $[T^{-1}]$, liquid phase NH ₄ to NH ₃
11.1.	Real	w0 dens	Root length density at top [L L ⁻³]
12.1.	Real	rorad	Mean root radius [L]
13.1.	Real	rdo	Travel distance resistance between bulk soil and root $[L^{-1}]$
14			Comment line
15.1.	Real	C2Nfact	factor of N from C (=N/C), used to calculate initial N pools from initial C pools (defined in block H of selector.in) and to estimate input to N _{lit} and N _{man} pool for organic fertilization [-]
16			Comment line
17.1.	Integer	nNtimes	Number of mineral nitrogen fertilizer events [-]
18			Comment line
19.1.	Real	Ntime(1)	Timestep of first mineral nitrogen fertilizer application [T]
19.2.	Real	Ntopurea(1)	Amount of N applied as Urea [M L ⁻²] at first mineral nitrogen fertilizer application

Table 12.7 Block I – Nitrogen Mineralisation, Transformation and Uptake Information

19.3.	Real	Ntopnh4(1)	Amount of N applied as Ammonium [M L ⁻²]
19.4.	Real	Ntopno3(1)	Amount of N applied as Nitrate $[M L^{-2}]$ at first mineral nitrogen fertilizer application. Note: Fertilizer application time step and amount of nitrogen for the three species have to be within one line. Provide as many lines as <i>nNtimes</i> .
20			Comment line
21.1.	Real	iNitLit	Initial concentration of the decomposable plant material (DPM) nitrogen pool [M L ⁻³] Note: specified for each node, material or each pool, see Block H, record 8.6 (<i>CO2alf</i>), defining the initial pool distribution over depth
21.2.	Real	iNitMan	Initial concentration of the resistant plant material (RPM) nitrogen pool [M L ⁻³] Note: specified for each node, material or each pool, see Block H, record 8.6 (<i>CO2alf</i>), defining the initial pool distribution over depth
21.3.	Real	iNitHum	Initial concentration of the humus (HUM) nitrogen pool [M L ⁻³] Note: specified for each node, material or each pool, see Block H, record 8.6 (<i>CO2alf</i>), defining the initial pool distribution over depth

Block I need not supplied if logical variable *Nitrogen* (Block A) was set equal to **.false.**. **Note**: In order to simulate Nitrogen, logical variable *Transport* can be set to **.false.**, however the input block K for solute transport information is required. This block K contains the solute transport parameters for three species, where solute 1 is Urea, solute 2 is Ammonium and solute 3 is Nitrate.

OUTPUTS

a_level.out – contains leaching of Urea, Ammonium and Nitrate (set logical variable *a_level* to .true.) for every atmospheric time step. Note that logical variable *transport* (rec 6.10, Block A) also has to be .true.

mass.out – contains sums of liquid phase and adsorbed Urea, Ammonium, Nitrate concentrations, Ammonia production over the entire profile, and masses of total mineral and total organic N

nod_inf.out – contains liquid phase and adsorbed Urea, Ammonium, Nitrate concentrations at every node for print times

nod_pool.out – contains organic nitrogen pools at every node for every atmospheric time step (set logical variable *nod_pool* to .true.)

conc.out - contains liquid phase and adsorbed Urea, Ammonium, Nitrate concentrations at every node for every atmospheric time step. Note: This file is written only when logical variable *nod_pool* is .true.

nitrogen.out – contains root uptake and sink term of Ammonium and Nitrate and rates of Urea hydrolysis, nitrification, denitrification and ammonia volatilization

plantupt.out – contains plant organ-specific N demand, total root N uptake rate, convective and diffusive root N uptake rates, organ-specific N masses, growth reduction factor due to N limitation and organ-specific N concentrations

Record	Туре	Symbol	Description
1			Comment line
2.1.	Logical	<i>1Ppools</i>	Set this variable equal to .true. to enable mineralistion/immobilisation of organic Phosphorus
2.2.	Logical	ProotUpt	Set this variable equal to .true. to enable diffusive and convective root uptake of Phosphorus
2.3.	Integer	SoilGen	Soil genetic classification: 0=calcareous,1=slighlty weathered, 2=moderately weathered, 3=highly weathered
2.4.	Logical	lPmin	Set this variable equal to .true. to enable sorption of mineral Phosphorus in the P _{ACTIVE} and in the P _{STABLE} pool
3	D 1	DCD	Comment line
4.1.	Real	PSP	Phosphorus sorption parameter PSP [-] defines the fraction of P that remains labile and does not move to P _{ACTIVE} , internally limited to: 0.05 <psp<0.75. note:="" records<br="">4.1 to 4.4 are specified for each material.</psp<0.75.>
4.2.	Real	stab_act_rat	P_{STABLE} to P_{ACTIVE} ratio [-], should always be >1. Default value suggested by Jones et al. (1984) is 4.0.
4.3.	Real	rev_rate_mod	Reverse rate modifier [-], reverse fluxes (P_{STABLE} to P_{ACTIVE} and P_{ACTIVE} to P_{LABILE}) are slowed down by this rate modifier. Default value suggested by Jones et al. (1984) is 0.1.
4.4.	Real	bo	P flux coefficient $b_0[-]$ affecting the P_{ACTIVE} to P_{STABLE} flux rate. According to Jones et al. (1984) expressed as =exp(-1.77*PSP-7.05) for non-calcareous soils. For calcareous soils set to 0.0076.
5			Comment line
6.1.	Real	PhosRo	C/P ratio of soil biomass [-]
7.1.	Real	PhosFh	Organic Phosphorus humification coefficient; WAVE default = 0.4, negative value indicates the use of the RothC value = 0.54 [-]
8			Comment line
9.1.	Real	RkCMPi	Humus P mineralization rate constant [T ⁻¹], negative value indicates the use of the RothC humus pool rate constant kHUM (Block H, record 8.4.)
10.1.	Real	Pho_rdo	Phosphorus travel distance resistance between bulk soil and root [L ⁻¹]

Table 12.8 Block J - Phosphorus Mineralisation, Transformation and Uptake Information

11.1.	Real	P_conv_diff_factor	Maximum convective to total phosphorus
10			uptake ratio [-]
12	Dool	D Fort lab	fraction of labile (soluble) Phosphorus in
13.1.	Keal		organic fertilizer [-], EPIC default=0.2
14.1.	Real	P_Fert_C	Fraction of P from C [-], required to
			calculate the amount of Phosphorus in
			organic fertilizer
15			Comment line
16.1.	Integer	P_Fert_num	Number of mineral Phosphorus fertilization events [-]
17			Comment line
18.1.	Real	PTopTime	Timestep of mineral Phosphorus fertilizer application [T], provide as many lines as <i>P_Fert_num</i> .
18.2.	Real	PTopMass	Amount of P applied [M L ⁻²] at respective mineral Phosphorus fertilizer application, provide as many lines as <i>P</i> _ <i>Fert_num</i> .
19			Comment line
20.1.	Real	P_init_Lit	Initial concentration of the decomposable plant material (DPM) Phosphorus pool [M L ⁻³] Note: specified for each node, material or each pool, see Block H, record 8.6 (<i>CO2alf</i>), defining the initial pool distribution over depth
20.2.	Real	P_init_Man	Initial concentration of the resistant plant material (RPM) Phosphorus pool [M L ⁻³] Note: specified for each node, material or each pool, see Block H, record 8.6 (<i>CO2alf</i>), defining the initial pool distribution over depth
20.3.	Real	P_init_Hum	Initial concentration of the humus (HUM) Phosphorus pool [M L ⁻³] Note: specified for each node, material or each pool, see Block H, record 8.6 (<i>CO2alf</i>), defining the initial pool distribution over depth

Block J need not supplied if logical variable *Phosphorus* (Block A) was set equal to **.false.**. **Note**: In order to simulate Phosphorus transport, logical variable *Transport* can be set to **.false.**, however the input block K for solute transport information is required. This block K contains the solute transport parameters for Phosphorus. Note: Simulation of Phosphorus transport and uptake is only possible, when nitrogen transport and uptake is also considered. In Block K the fourth solute is P.

OUTPUTS

a_level.out – contains leaching of phosphorus (set logical variable a_{level} to .true.) for every atmospheric time step

mass.out - contains sums of mineral and organic P, as well as total P

nod_inf.out – contains liquid phase and adsorbed P at every node for print times nod_pool.out – contains organic phosphorus pools at every node for every atmospheric time step (set logical variable *nod_pool* to .true.) conc.out - contains liquid phase and adsorbed phosphorus concentrations at every node for every atmospheric time step. Note: This file is written only when logical variable *nod_pool* is .true.

phosphorus.out – contains, flux rates from P_{labile} to P_{active} and from P_{active} to P_{stable} , P fraction remaining in the labile pool, crop development stage, temperature sum, P demand of the entire plant, total plant weight, sink term of labile P, actual P content of the entire plant, actual convective root P uptake, total P uptake demand, actual diffusive P uptake, total mass of P in plant, growth reduction factor due to P limitation, source/sink term of labile P concentration (as a consequence of P mineralization/immobilization and cycling of mineral P pools), root uptake sink term of labile P concentration

Record	Туре	Symbol	Description
1			Comment line
2.1.	Real	Epsi	Temporal weighing coefficient.
			=0.0 for an explicit scheme,
			=0.5 for a Crank-Nicholson implicit scheme.
			=1.0 for a fully implicit scheme.[-]
2.2.	Logical	lUpW	.true. if upstream weighing formulation is to
			be used
			.false. If the original Galerkin formulation is
2.2	Logical	14mtD	to be used.
2.3.	Logical	IARID	order to fulfill the <i>PaCr</i> stability criterion
2.4	Logical	ITDan	true if at least one transport or reaction
2.7.	Logical	ШЪср	coefficient ($ChPar$) is temperature dependent
			Otherwise, if <i>lTDep</i> =.true, then all values of
			ChPar(i,M) should be specified at a reference
			temperature <i>Tr</i> =20°C. For nitrogen transport
			only, set to .false.
2.5.	Real	cTolA	Absolute concentration tolerance [M L ⁻³], the
			value is dependent on the units used (set equal
			to zero if nonlinear adsorption is not
			considered)
2.6.	Real	cTolR	Relative concentration tolerance [-] (set equal
			to zero if nonlinear adsorption is not
2.7	Intagan	MaxItC	Considered).
2.1.	Integer	MuxIIC	during any time step for solute transport -
			usually 20
2.8.	Real	PeCr	Peclet/Courant Stability criterion Set equal to
			zero when $lUpW$ is equal to .true. – usually 2
2.9.	Logical	lTort	.true. if the tortuosity factor [Millington and
	_		Quirk, 1961] is to be used.
			.false. if the tortuosity factor is assumed to be
			equal to one.
3			Comment line
4.1.	Real	ChPar(1,M)	Bulk density of material M , ρ [M L ⁻³],
	D 1		specified for 1 to NMat
4.2.	Real	ChPar(2,M)	Longitudinal dispersivity for material type M,
4.2	Deal	Ch D m (2 M)	$D_L[L]$, specified for 1 to NMat
4.3.	Real	ChPar(3,M)	described as type 1 i.e. sites with
			instantaneous soration when the chamical
			nonequilibrium option is considered. Set
			equal to 1 if equilibrium transport is to be
			considered. Dimensionless fraction of the
			adsorption sites in contact with mobile water
			when the physical nonequilibrium option is
			considered. Set equal to 1 if all sorption sites

			are in contact with the mobile water, specified for 1 to NMat
4.4	Real	ChPar(4,M)	Immobile water content. Set equal to 0 when the physical nonequilibrium option is not considered., specified for 1 to NMat
5			Comment line
6			Comment line
7.1.	Real	ChPar(5,M)	Ionic or molecular diffusion coefficient in free water, D_w [L ² T ⁻¹]
7.2.	Real	ChPar(6,M)	Ionic or molecular diffusion coefficient in gas, $D_g [L^2 T^{-1}]$
8			Comment line
9.1	Real	ChPar(7,M)	Linear adsorption isotherm coefficient, k_s , for material type M [L ³ M ⁻¹]. Set equal to zero if no adsorption is to be considered, specified for 1 to NMat. For linear sorption only record 9.1 has to be specified, records 9.2 and 9.3 can be skipped.
9.2	Real	ChPar(8,M)	Langmuir η parameter [L ³ M ⁻¹] of the non- linear Langmuir adsorption isotherm for material type <i>M</i> . Specified for 1 to NMat. Set record 9.3 (Freundlich n) to 1 for Langmuir sorption.
9.3	Real	ChPar(9,M)	 Freundlich n parameter [-] of the non-linear Freundlich adsorption isotherm for material type <i>M</i>. Specified for 1 to NMat. Set record 9.2 (Langmuir η) to zero for Freundlich sorption. Note that records 9.2 and 9.3 have to be given for Freundlich or Langmuir sorption.
10			comment
11.1.	Integer	kTopCh	Code which specifies the type of upper boundary condition =1: Dirichlet boundary condition, =-1: Cauchy boundary condition. =-2: a special type of boundary condition for volatile solutes
11.2.	Real	cTop(1)	Concentration of the upper boundary, or concentration of the incoming fluid, for the first solute [M L ⁻³]
11.3.	Real	cTop(2)	Concentration of the upper boundary, or concentration of the incoming fluid, for the second solute [M L^{-3}] (not specified if <i>NS</i> < 2).
11.4.	Real	cTop(NS)	Concentration of the upper boundary, or concentration of the incoming fluid, for the <i>NS</i> th solute [M L ⁻³]
12			comment
13.1.	Integer	kbotCh	Code which specifies the type of lower boundary condition =1: Dirichlet boundary condition,

			=0: continuous concentration profile,
			=-1: Cauchy boundary condition
13.2.	Real	cBot(1)	Concentration of the lower boundary, or
			concentration of the incoming fluid, for the
			first solute [M L ⁻³]
13.3.	Real	cBot(2)	Concentration of the lower boundary, or
			concentration of the incoming fluid, for the
			second solute $[M L^{-3}]$ (not specified if $NS < \infty$
12.4	D 1		$\frac{2}{2}$
13.4.	Real	cBot(NS)	Concentration of the lower boundary, or
			NSth actuate IM L ⁻³
11			
14	Real	cRootMar(1)	Maximum allowed concentration in the root
13.1.	Real	choomman(1)	solute uptake term for the first solute $[M L^{-3}]$
			When the nodal concentration is lower than
			<i>cRootMax</i> , all solute is taken up. When the
			nodal concentration is higher than <i>cRootMax</i> ,
			additional solute stays behind.
15.2.	Real	cRootMax(2)	Maximum allowed concentration in the root
			solute uptake term for the second solute [M L
			³].
15.3.	Real	cRootMax(NS)	Maximum allowed concentration in the root
			solute uptake term for the NSth solute $[M L^{-}]$
16			<u> </u>
$\frac{16}{17.1}$	D 1	(D 1	Ti 1 (i C(1 to 1 TT)
<u> </u>	Real	tPulse	lime duration of the concentration pulse [1]
$\frac{18}{10}$			comment
19	Deal	Ctimes	Comment Timester (a) for as bits analisation on tan and
20.1.	Real	Ctime	hottom All time store have to be within one
			line
21			comment
21 1	Real	Cton	Solute concentration [M I ⁻³] applied at top of
<u>~</u> 1.1	ittai	Ciop	the profile for timesteps 1 to n. all
			concentrations have to be within one line
22			Comment
22.1	Real	Cbot	Solute concentration [M L ⁻³] applied at
			bottom of the profile for timesteps 1 to n, , all
			concentrations have to be within one line

Records 6 to 9 need to be specified for each solute,

Block K need not supplied if logical variable *Transport* (Block A) was set equal to **.false.** In order to simulate Nitrogen, input block K for solute transport information is required. This block K then contains the solute transport parameters for at least three species, where solute 1 is Urea, solute 2 is Ammonium and solute 3 is Nitrate. In case of simulation of Phosphorus transport and uptake P is solute 4. Records 18 - 22 must only be specified when Nitrogen is not simulated.